Dr. Michael Thompson
Professor
Director, M.Eng in Manufacturing Engineering
Associate Dean (Graduate Studies, Eng)
Department of Chemical Engineering
1280 Main Street West,
Hamilton, ON, L8S 4L7, Canada
Driving directions and map

Office: JHE A411
Voice: +1 (905) 525 9140 extension 23213
email: mthomps@mcmaster.ca

polymer processing, extrusion and reactive extrusion.
Education
  • B.Sc. McMaster University (1990)
  • B. Eng. McMaster University (1992)
  • M. Eng. McMaster University (1994)
  • Ph.D. University of Waterloo (1998)
  • McMaster Manufacturing Research Institute (MMRI) Member

The research interests of my group are primarily focused around extrusion machinery, whether the process of study serves the plastics, pharmaceutical or functional foods industries. Through experiments and modeling, knowledge and software tools are being produced to assist these industrial sectors in controlling or developing their processes. We are particularly interested in controlling the morphology of an extruded material system in order to achieve desired product specifications.

Current Areas of Research

  • Granulation extrusion – particle design by wet or dry processes for pharmaceutical, nutriceutical, foods and detergent applications. Tailoring of particle size/shape/porosity on a continuous basis within an extruder through screw design and process layout. Current work includes studying the mechanisms involved in wet granulation within the extruder when using liquid injection or foam delivery methods. Additionally, melt granulation is being studied for its capacity to improve the storage and bioavailability of moisture-sensitive or highly hydrophobic APIs, showing this method is often a desirable alternative to hot melt extrusion techniques.
  • Spray drying– encapsulating of biologically active ingredients in appropriate diluents for aerosol delivery forms. (new)
  • Composite/Bioplastics processing – controlling structural features within an extruder. Examination of interfacial and colloidal properties for conventional and nano-scale fillers within a polymer matrix of synthetic or biological origins. Understanding and modeling the relationship of morphology and end-user specification inproduct design

Gas-polymer and liquid-polymer dispersive extrusion – customization of polymer products in continuous or discrete forms to exhibit important features as end properties. This includes preparation of foams but may alternatively use the non-polymer phase to create a beneficial morphology within the polymer.

Recent Research Projects

1. Granulation Extrusion

Twin screw extrusion (TSE) is a relatively novel technology for the Pharmaceutical and Nutraceutical industries, offering continuous manufacturing capability with superior mixing of particulate matter being granulated or wetted. Our research examines:

  • Foam granulation – this robust, continuous manufacturing technology using a twin screw extruder was developed by our group in collaboration with the original co-inventor (Paul Sheskey, Dow Chemical) to consider aqueous foam as a binder.
  • Wet granulation – studying the influence of process, material and screw design factors on granule development, using liquid injection or foam delivery methods.

Melt granulation – use of a molten binder to granulate excipients without the use of water. Experimental studies and numerical particle simulation approaches are being used to advance the integration of extrusion technology into these industries.

Select publications of previous work (front pages):

2. Particle Processing Studies of Extrusion Processes

Fig. 1: 3mm pellets entering a single-screw extruder
Fig. 2: Granulation of 0.1mm powder in a kneading element of a co-rotating twin screw extruder

 

Particulate processing with screw extruders has been a vital industrial operation for decades. Plastics, food, and pharmaceutical industries rely on extruders to transform solids into more useable forms. Despite the importance of solids-related interactions within this machinery, little attention has been given to the granular mechanics taking place due to the difficulties in modelling such phenomena. Both design and troubleshooting activities on this class of machinery can be vastly improved if we can fully understand the whole process. The research conducted by my group is looking at the mechanisms of solids-conveying, melting, and granulation in extruders, both experimentally and with the use of numerical tools such as the "Distinct Element Method (DEM)".

Select Publications: (front pages)

3. Bioplastics, Foams and Reactive Modifications

We are interested in understanding the root phenomena influencing important industrial problems such as product quality and process stability which arise as special materials are being prepared by extrusion. Bioplastics are a new category of polymers which present benefits to industries where single-use applications are dominant and low mechanical strength can be tolerated, like the packaging sector. As a new material class, these bioplastics often require very different machinery configurations and processing practices be used compared to petroleum plastics. In foaming, our group is examining processing aspect of foaming by physical and chemical blowing agents and how foaming may be utilized with composite materials like thermoplastic olefin elastomers, glass-fiber reinforced thermoplastics, and nanocomposites to do more than simply reduce part weight, like control fiber orientation. In reactive modification of polymers, the polymer processing equipment is used as a solvent-less reactor to change the molecular architecture of a material. Unique chemistries are employed in this high-temperature, high pressure environment to bring about the desired change in the molecular architecture of the polymer.

Selected Bioplastics publications

Selected publications on Foams and Reactive Modification/Degradation

4. Polymer Composites

We are interested in tailoring the properties of polymers to better meet the needs in more specialized applications. On-going projects in clay-polymer nanocomposites and electrically conductive materials have targeted usage to the automotive and alternative energy industries, attempting to show more economical methods of manufacturing or improved properties based on an understanding of transport phenomena and material properties.


Selected Publications and Patents

  • J. P. Christiano, M. R. Thompson, "Extruder Screw", Davis-Standard Corporation, US Patent No. 6, 179,461 (Jan. 30, 2001).
  • M. R. Thompson, Twin Screw Extrusion for the Granulation of Pharmaceuticals, Annual Technical Meeting for the Society of Plastics Engineers (ANTEC), Cincinnati, OH. Apr 22-24 (2013)
  • J-M. Restreop-Florez, A. Bassi, M. Thompson, Effect of Biodiesel Addition on Microbial Population in Diesel Storage Tanks, NACE International Corrosion Conference and Expo, 2013.
  • M. R. Thompson, S. Weatherley, R. Pukadyil, B. Mu, P. J. Sheskey, Foam Granulation Extrusion: A Novel Method to Continuous Wet Granulation of Powder Drug Formulations, American Institute of Chemical Engineers (AICHE) Annual Conference, Pittsburgh, PA, Oct. 28-Nov. 2 (2012)
  • P. J. Sheskey, B. Mu, M. R. Thompson, Aspects of Foamed Binder Addition for Foam Granulation in a Twin Screw Extruder, American Association of Pharmaceutical Scientists General Meeting, Chicago IL, Oct 14-18 (2012)
  • M.R. Thompson, S. Weatherley, R.N Pukadyil, and P.J. Sheskey, Foam Granulation Extrusion: A Novel Method to Continuous Wet Granulation of Powder Drug Formulations, American Association of Pharmaceutical Scientists General Meeting, Washington DC, Oct 23-25 (2011)
  • M. Mazhary, K.E. Nielsen, F.A. Brandys, M.R. Thompson, Understanding thermally induced wrinkling in decorative film laminated sheets, Annual Technical Meeting for the Society of Plastics Engineers (ANTEC), Boston, MA. May 1-5 (2011)
  • J. Liu, W.R. Rodgers, T. Cao, M.R. Thompson, Exfoliation aids for preparation of polymer-layered silicate nanocomposites, Annual Technical Meeting for the Society of Plastics Engineers (ANTEC), Boston, MA. May 1-5 (2011)